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Systematic construction and prediction
of the arrangement of the strands

of sandwich proteins
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The problem of predicting the three-dimensional structure of a protein starting from its amino
acid sequence is regarded as one of the most important open problems in biology. Here, we
solve aspects of this problem for the so-called sandwich proteins that constitute a large class of
proteins consisting of only b-strands arranged in two sheets. A breakthrough for this class of
proteins was announced in Kister et al. (Kister et al. 2002 Proc. Natl Acad. Sci. USA 99,
14 137–14141), in which it was shown that sandwich proteins contain a certain invariant
substructure called interlock. It was later noted that approximately 90% of the observed
sandwich proteins are canonical, namely they are generated by certain geometrical structures.
Here, employing a topological investigation, we prove that interlocks and geometrical
structures are the direct consequence of certain biologically motivated fundamental principles.
Furthermore, we construct all possible canonical motifs involving 6–10 strands. This
construction limits dramatically the number of possible motifs. For example, for sandwich
proteins with nine strands, the a priori number of possible canonical motifs exceeds 360 000,
whereas our construction yields only 49 geometrical structures and 625 canonical motifs.

Keywords: proteins; strand arrangements; motifs
1. INTRODUCTION

It is well known that the three-dimensional structure of
a protein is completely determined from the sequence
of its amino acids. However, the problem of predicting
the three-dimensional structure (often called tertiary
structure) of a protein starting from a given amino acid
sequence remains open.

Proteins appear in the form of certain topological
structures called folds. It has been suggested that the
limited number of folds is perhaps due to the existence
of rules that dictate the folding of a polypeptide chain.
Furthermore, it has been suggested that such rules can
be divided into two types: rules that predict the
so-called secondary elements of the protein, namely
the b-strands and the a-helices, and rules that give the
arrangement of strands and helices into a tertiary
structure. Although, the question of the complete
description of the first type of rules remains open, the
prediction of the strands and the helices starting from a
given amino acid sequence has now become a routine
procedure of approximately 80% accuracy (Rost 2001).
However, even for proteins that consist of only
b-strands (and no a-helices) such as the so-called
sandwich proteins, the problem of predicting the
orrespondence (tsp@hpclab.ceid.upatras.gr).
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arrangement of the strands in the space remains
open. In this direction, structural biologists have used
the occurrence of the so-called Greek key introduced by
Richardson (Chirgadze 1987) as well as several
different algorithms based on neural networks and
Markov models (Chothia & Finkelstein 1990; Yue &
Dill 2000).

The b-strands of sandwich proteins are arranged in
two planes. Regarding the structure of sandwich
proteins, a breakthrough was announced in Kister
et al. (2002), in which it was shown that sandwich
proteins contain a certain supersecondary substructure
called interlock. Following this discovery, it was noted
in Fokas et al. (2004) that approximately 90% of the
observed secondary structures of sandwich proteins are
canonical, i.e. they satisfy certain structural rules (see
rules I–III of Fokas et al. (2004)). Furthermore, it was
shown in Fokas et al. (2005) and Kister et al. (2006) that
these rules are automatically satisfied provided that
the canonical structure is generated from a certain
geometrical structure.

In this paper, (i) we show that the existence of
geometrical structures is a consequence of certain
simple biologically motivated principles, (ii) we identify
all possible geometrical structures, and (iii) we con-
struct all possible canonical strand arrangements of
sandwich proteins consisting of 6–10 strands.
J. R. Soc. Interface (2009) 6, 63–73
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Figure 1. (a,b) Two schematics of a motif consisting of
nZ9 strands.
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2. DEFINITIONS AND SCHEMATICS

We first review some definitions of Fokas et al. (2005)
and Kister et al. (2006). We then introduce the notion
of a path that is important for the subsequent analysis.
Finally, we present several schematics for the second-
ary structure of a given sandwich protein, which is
referred to as a motif.
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Figure 2. Detailed schematic of an SP motif with nZ9 strands.
2.1. Cyclic numbering

Throughout this work, n denotes the number of strands
of a sandwich protein. Although our analysis is valid for
any positive integer n, we concentrate on 6%n%10
since this is the range of the strands of most observed
sandwich proteins. We assign the numbers 1, 2,., n to
the n strands. Two consecutive strands i and iC1 are
connected with a loop directed from i to iC1 and
denoted as i/iC1. We use cyclic numbering (‘addition
modulus n’), e.g. if iZn the next strand iC1ZnC1 is
strand 1. Furthermore, the strand n is connected with
the strand 1 by the fictitious loop n/1.

We recall some definitions of Fokas et al. (2005) and
Kister et al. (2006): sheets are the two planes in which
the strands of a sandwich protein are arranged.
Neighbouring strands (NSs) are two strands in the
same sheet with no other strand between them.
A jumping pair (JP) is a pair (i, iC1) of two consecu-
tive strands that belong to different sheets. If both
strands of a JP lie at the same end (left or right) of the
two sheets, then the JP will be an edge JP (EJP).
Otherwise, it is an internal JP (IJP). An interlock
consists of two IJPs, (i, iC1) and ( j, jC1), such that i
and j are NSs, iC1 and jC1 are also NSs and if i is to the
left (right) of j then iC1 is to the right (left) of jC1. We
also define as a ‘jumping loop’ and as an ‘edge jumping
loop’ the loop i/iC1, where (i, iC1) is an IJP and an
EJP, respectively.
2.2. Paths

For any two strands i and j, a path from i to j, denoted by
i1j, is the sequence of all consecutive strands and loops,
in increasing order, beginning with i and ending at j.

Examples: the path i1iC1 includes the loop i/iC1
and the two strands i and iC1; 317 is the path 3/4/
5/6/7; for nZ9, 812 is the path 8/9/1/2. By
the ‘trivial path i1i’, we define only the strand i,
whereas by the ‘complete circular path i1i’, we define
the path i/iC1///n/1//i, which contains all
strands and loops. For any two strands i, j, isj, the two
paths i1j and j1i, put together in this order, form the
complete circular path i1i.
2.3. Schematic representations

A typical representation of a motif is given by the
example of figure 1a; the upper and lower sheets contain
the strands 5, 4, 3, 8, 9 and 6, 7, 2, 1, respectively.
Figure 1b provides an alternative schematic of the
same motif, which also contains the connecting loops
and the fictitious loop 9/1. In figure 1b, one can easily
J. R. Soc. Interface (2009)
identify any path i1j, such as the path 812
mentioned earlier.

For our analysis, we will need more details about the
orientation and the location of strands and loops, as
shown in the more informative schematic of figure 2:
the upper and lower sheets are located on the upper and
lower planes ABCD and EFGH, respectively. The planes
ABFE and DCGH will be referred to as the front and
back planes, respectively. The planes ADHE and BCGF
will be referred to as the left and right edges, respectively.
Strands in each sheet are directed either from the front to
the back planes or from the back to the front planes. Two
strands with the same direction are called parallel, while
two strands of opposite direction (i.e. one from the back
to the front plane and the other from the front to the back
plane) are called antiparallel. Loops connecting consecu-
tive strands that are both either in the front or in the
back planes are denoted by continuous and broken lines,
respectively. For example, the loops 2/3 and 6/7 lie in
the front plane, while 7/8 and 5/6 lie in the back
plane. Note that 9/1 starts in the back plane and ends
at the front one, i.e. it crosses from one plane to the other.
It is clear that there exist a priori several choices for
possible loop and strand orientations. One of these
choices for the motif of figure 1a is shown in figure 2,
where strands 3 and 4 are antiparallel, while strands 9
and 1 are parallel.
2.4. Relative position of strands

Let k and m be two different strands and suppose that
they do not form an EJP. Then the schematic specifies
unambiguously whether k is to the left or to the right of
m. Indeed, there exist the following possibilities for k
and m: (i) they are in the same sheet, (ii) they are in
different sheets and lie on opposite sides of an IJP,
(iii) one of them is part of a JP and the other lies to the
left or to the right of this JP, and (iv) they form a JP.
For cases (i)–(iii), it is clear whether k is to the left or to
the right of m. Regarding (iv), let us take, without loss

http://rsif.royalsocietypublishing.org/
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Figure 3. (a–g) Examples of unacceptable cases and (h) the EJP acceptable case. (a,b) Loops cross each other, (c–e) loops overlap
and (f–h) loops cross from the front to the back plane.
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of generality,mZkC1. If kK1 andmC1 lie on different
sides of this JP, then the relative position of k,m is also
well defined: if kK1 is on the left (right) and mC1 is on
the right (left) of the JP (k, mZkC1), then k is also on
the left (right) of m.
2.5. Path directions

We say that a path i1j has right (left) direction or,
equivalently, that it is a rightward (leftward ) path, if
for all consecutive pairs k, kC1 in this path, k is to the
left (right) of kC1. Furthermore, if the path iK11iC1
has a right or left direction, then we also adopt this as
the direction of the trivial path i1i. For example, in
figure 1b, the path 215 and the trivial path 313 are
both leftward.
2.6. Direction change

If (k, kC1) is a JP and both kK1 and kC2 are to the
left (right) of this JP, then we say that this JP causes a
direction change, namely the direction changes from
rightward (leftward) to leftward (rightward).
3. FUNDAMENTAL PRINCIPLES

We introduce three fundamental principles. These can
be considered as the fundamental axioms, from which
observed motifs can be constructed. These fundamental
principles are consistent with the following basic
biological requirement.

Folding takes place using only necessary and
uncomplicated moves. Unnecessary jumps or moves
that create complicated structures are avoided.

For the generation of a motif, it is necessary that
there exists a change of direction. According to the
definitions of §2, this can occur only at a JP. However, if
this JP is not an EJP, it is easy to see that this direction
change leads to more direction changes and more JPs.
Based on the above, we postulate the following.
J. R. Soc. Interface (2009)
3.1. Fundamental principle 1

A direction change occurs only at an EJP.
Consider two JPs (i, iC1) and ( jK1, j ) contained in

a rightward (leftward) path i1j with no other JPs
between them. This path leaves one sheet at strand i
using the JP (i, iC1) and returns to the same sheet at
strand j, using the JP ( jK1, j ). If i and j are NSs, we
consider these two JPs as either unnecessary or
fictitious because the above path could continue in its
rightward or leftward direction from i to j without the
need to change sheets, i.e. without these two JPs.
Alternatively, the path can be viewed as lying entirely
in the sheet of i and j, i.e. this sheet is schematically
deformed so that the two JPs are fictitious.
3.2. Fundamental principle 2

There do not exist paths i1j, which leave a sheet at the
strand i using the JP (i, iC1), do not change direction
and return to the same sheet at the strand j, using a
second JP ( jK1, j ), where i and j are NS.
3.3. Fundamental principle 3

Loops do not overlap or cross each other. Furthermore,
loops do not cross from the front (back) to the back
(front) planes, with the possible exception of loops
associated with EJPs.

This principle implies that the cases shown in
figure 3a–e are not allowed. Similarly, the cases
obtained from these figures when the left–right sides
and/or the front–back planes are interchanged are also
prohibited. It should be noted that, if the two
consecutive strands involved in these examples are
the strands (n, 1), then the loop n/1 is fictitious and in
this case the violations do not take place.

We emphasize that several of the above cases have
been discussed by other authors. In particular, the non-
occurrence of crossing loops and of topological knots

http://rsif.royalsocietypublishing.org/
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has been explicitly stated in Richardson (1977) and Lim
et al. (1978). Furthermore, the prohibition of the cases
figure 3c,d follows from the results of Efimov (1982,
1995), which state that the superhelices formed by
three consecutive b-strands in a sandwich protein must
be right-handed. Also, the prohibition of cases
figure 3f,g follows from the fact that the dehydration
of the NH and CO groups of a polypeptide chain is
energetically expensive (e.g. Lim et al. 1978).
4. GEOMETRIC PROPERTIES OF MOTIFS

In this section, we show that the fundamental proper-
ties postulated in §3 imply that motifs possess certain
basic properties. It will be shown in §5 that these
properties can be used for the systematic construction
and the prediction of all such motifs.

Proposition 4.1. If a motif of a sandwich protein satisfies
the three fundamental principles postulated in §3, then:
(i) Two consecutive strands lying in the same sheet are
necessarily NSs. (ii) Two consecutive strands that
are not the strands n, 1 and which do not form an
EJP are necessarily antiparallel. (iii) Assume that the
JPs (i, iC1) and ( j, jC1) form an interlock and neither
of these JPs is (n, 1). Then the two loops i/iC1 and
j/jC1 lie entirely in different planes, i.e. one loop lies
in the front plane and the other lies in the back plane.
Moreover, each of the pairs (i, jC1) and ( j, iC1)
consists of parallel strands and the strands of the one
pair are antiparallel with the strands of the other pair.
(iv) Two consecutive strands (in the same or in different
sheets) cannot lie on different sides of an interlock.
(v)Assume that i1j is a path that does not contain a JP
and also does not contain the strands n, 1. Then the
number of strands in this path is odd (even) and the
number of loops is even (odd ) if and only if the strands i,
j are parallel (antiparallel ). Included in the parallel case
(even number of loops) is the trivial path i1i.

Proof. If the two consecutive strands are not n, 1 then
(i) follows directly from fundamental principle 3. If the
two consecutive strands are n, 1 and we accept the
existence of at least one strand k between them, a
systematic examination of all possible cases (regarding
the location of other strands such as kK1, kC1 and
paths such as 11k and k1n) shows violation of funda-
mental principle 1 and/or fundamental principle 2.
Hence (i) is valid for any pair of consecutive strands.
Part (ii) follows directly from fundamental principle 3
since, otherwise, their loop would cross from one plane
to the other. The two exceptions are allowed because
n/1 is a fictitious loop or the loop of an EJP and these
cases do not cause such violation. Part (iii) is a direct
consequence of fundamental principle 3 and part (ii).
Part (iv) follows immediately from part (iii), since the
loop connecting the two consecutive strands would
have to cross one of the loops of the interlock. Special
consideration is needed for the cases where (i) the two
consecutive strands on different sides of the interlock
are n, 1 and (ii) one of the JPs of the interlock is (n, 1).
In these cases, the presence of the fictitious loop does
not cause a violation of fundamental principle 3.
However, in these cases, the path 11n will have to
J. R. Soc. Interface (2009)
contain both JPs of the interlock and this causes a
violation of fundamental principle 1. Part (v) is a direct
consequence of (ii), since all consecutive strands of the
path are antiparallel and the number of strands equals
the number of loops plus one. This argument fails if
the path contains the consecutive strands n, 1. &

Proposition 4.2. Under the assumption of proposition
4.1, a motif possesses the following properties: (i) two
JPs (i, iC1) and ( j, jC1) cannot have all the properties
of an interlock except the property that (i, j ) and
(iC1, jC1) are NSs and (ii) there do not exist two JPs
(i, iC1) and ( j, jC1) such that i and jC1 lie in the same
sheet, j and iC1 also lie in the same sheet, and if i is to
the left (right) of jC1 then iC1 is to the right (left) of j.

Proof. For part (i), assume, for clarity, that iC1 and
jC1 are not NSs, hence there exists a strand k between
them, (i, iC1) is a front JP, ( j, jC1) is a back JP, both
are upward and i is to the left of j. All other cases can be
treated in a similar way. Let (l, lC1) and (r, rC1),
respectively, be the left and the right EJPs. Funda-
mental principle 1 implies that k belongs to either the
rightward path lC11i or the leftward path rC11j.
Both these cases must be rejected since they violate
fundamental principle 2 and/or fundamental principle
3. Regarding part (ii), the difference with an interlock is
that now one of the JPs is upward and the other is
downward. Both JPs have the same direction, say
rightward for clarity. Then the path must include the
right EJP so that it can change direction from
rightward to leftward and then it must contain a loop
m/mC1 that crosses one or both of the JPs; this
violates either part (i) or proposition 4.1(iv). &

Theorem 4.3. Under the assumption of proposition 4.1,
the IJPs appear only in the form of interlocks.

Proof. Let (i, iC1) be an IJP and, for clarity, assume
that it is upward, in the front plane and rightward. All
other cases can be treated in a similar way. The path
iC11i has to include the right EJP so that it changes
direction from rightward to leftward. Then it must
cross from the right to the left of the IJP (i, iC1) and,
by proposition 4.1(i), this may take place only with a JP
( j, jC1), where j is to the left and jC1 is to the right of
the IJP (i, iC1). By proposition 4.2(ii), the JP ( j, jC1)
is also upward. By proposition 4.2(i), i, j and iC1, jC1
must be NSs. Thus, the two JPs (i, iC1) and ( j, jC1)
form an interlock. Other JPs crossing the interlock
cannot exist according to proposition 4.1(iv). &
5. DETERMINATION OF ALL POSSIBLE
GEOMETRICAL STRUCTURES AND ALL
CANONICAL MOTIFS FOR SANDWICH
PROTEINS

We present a slight modification of the definition of a
geometrical structure (Fokas et al. 2005) and introduce
certain symmetries that geometrical structures may
satisfy. We then construct systematically all possible
geometrical structures and canonical motifs consisting
of 6–10 strands. We use for geometrical structures the
same terms used for motifs (e.g. jumping loop, JP, EJP,

http://rsif.royalsocietypublishing.org/
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(d ) (e)

Figure 5. (a) LR, (b) UL, (c) D, (d ) all and (e) none. Examples
of geometrical structures with symmetry properties. The
symmetry axes for the LR and UL properties are indicated
with dashed lines and the symmetry point for the D property
by ‘squares’. Positions denoted with ‘circles’ represent
examples of symmetry pairs (LR, UL and D cases) and a
symmetry quadruplet (‘all’ case). Self-symmetric positions
are denoted with a star.

(a) (b) (c) (d )

Figure 4. An example of a geometrical structure with two
interlocks and nZ9. (a) The geometrical structure and (c) the
central part. (b) The left and (d ) the right edge parts are shown.
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interlock and path), the only difference being that
instead of strands we use strand positions.

Definition 5.1 (geometrical structures). A geometrical
structure is an arrangement of strand positions (denoted
by dots) that lie in two different levels (sheets) and each
position is connected (by an undirected loop) with two
different strand positions, so that the following rule is
satisfied: a loop either connects two NS positions in the
same sheet, or it is a jumping loop that forms an
interlock with another jumping loop, or it is an edge loop.

An example of a geometrical structure with nZ9
strand positions is shown in figure 4a.

For the creation of a sandwich protein, it is necessary
that there exists at least one interlock. Furthermore, in
all observed cases, the maximum number of strands in a
path that lies entirely in the same sheet is four. Hence,
we make the following two assumptions.

Assumption 5.2. Each geometric structure contains at
least one interlock.

Assumption 5.3. Let M denote the number of strands in
a path that lies entirely in the same sheet. Then M%4.

Definition 5.4 (central and edge parts). It is convenient
to decompose a geometrical structure into three basic
components: the central part that consists of all
interlocks and all paths between two neighbouring
interlocks and the left and right edge paths that consist
of the remaining strands and loops at the left and right
of the central part, respectively. For example, for the
geometrical structure of figure 4a, the central part
(figure 4c) consists of two interlocks and two paths: one
in the lower sheet, which is the trivial path consisting of
the common position of the two interlocks and the other
in the upper sheet consisting of one loop and the two
strand positions of the left and right interlocks. The left
edge part (figure 4b) consists of three loops (one loop
being the left edge loop) and two strands at the lower
sheet. The right edge part (figure 4d ) consists of just
the right edge loop since the two rightmost strand
positions are included in the central part. This example
shows that in some cases an edge part may consist of
only an edge loop and no strand positions.

5.1. Representation of all edge parts

Any pair of the left and right edge parts is represented
by an edge matrix

E Z
l 1 r1

l 2 r2

" #
;

where the entries of the left (right) column denote the
number of strand positions of the left (right) edge part
and the entries of the upper (lower) row denote the
number of strands in the upper (lower) sheet. Thus, for
example, l2 and r1 denote, respectively, the number of
strands in the lower sheet of the left edge part and in the
upper sheet of the right edge part. In the example of
figure 4, l1Z0, l2Z2, r1Z0, r2Z0.

Definition 5.5 (symmetry properties). We say that a
geometrical structure or the central part of a geo-
metrical structure possesses the LR, or the UL, or the
J. R. Soc. Interface (2009)
D symmetry, if each of its strand positions is symmetric
to another strand position with respect to a vertical
axis, or a horizontal axis, or a point. It turns out that
any two of the above symmetries imply the third. Thus,
we use the term ‘all’ if any two of them are valid. Also,
we use the term none if none of these symmetries is
valid. Also we say that a pair of the left and right edge
parts has the LR, UL, D, all and none of the symmetry
properties if, respectively, the left and right columns
are the same (l1Zr1, l2Zr2), or the lower and upper
rows are the same (l1Zl2, r1Zr2) or the diagonal entries
are the same (l1Zr2, l2Zr1), or all entries are the same
(l1Zl2, r1Zr2), or none of the above takes place. In the
case that a geometrical structure possesses the LR or
UL or D symmetry, we use the term ‘symmetry pair’ for
two different symmetric positions. If the geometrical
structure possesses all symmetry properties, then there
are symmetry quadruplets, consisting of four different
positions with the property that each of them forms a
symmetry pair with each of the remaining three
positions, one pair with respect to the LR, another
with respect to the UL and the third with respect to the
D symmetry. If the geometrical structure possesses the
LR or all symmetry properties, then there may also
exist up to two self-symmetric positions, i.e. positions
that lie on the vertical symmetry axis. Examples are
shown in figure 5.
5.2. The generation of canonical motifs

According to Fokas et al. (2005) and Kister et al.
(2006), each geometrical structure gives rise to cano-
nical motifs, by placing the strands in specific strand
positions and requiring the rule that two positions
connected with a loop must be occupied by consecutive
strands. Each position is connected by a loop with two

http://rsif.royalsocietypublishing.org/
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(d ) (e) ( f )

Figure 6. All possible central parts observed in actual cases and their symmetry properties. (a) cZ4 (all) (4a); (b) cZ6 (all) (6a);
(c) cZ7 (LR) (7a); (d ) cZ8 (all) (8a); (e) cZ8 (all) (8b); ( f ) cZ9 (none) (9a).

68 Arrangement of sandwich protein strands T. S. Papatheodorou and A. S. Fokas

 rsif.royalsocietypublishing.orgDownloaded from 
other positions. Thus, after strand 1 is placed in any of
the n positions, there are two available positions to place
strand 2. After strand 2 is placed in one of these two
positions, there is only one position available to
successively place each of the remaining strands, since
the other one is already occupied by the previous strand.
Thus, after 1 and 2 are placed in a specific position, one
canonical motif is generated. Since there are two choices
to place strand 2 and n choices to place strand 1, the total
number of canonical motifs generated is, in general, 2n.
However, if the geometrical structure possesses a
symmetry property, then there are cases where two
canonical motifs coincide after one of them is properly
rotated (i.e. if the left–right sides or the upper–lower
sheets or both are interchanged). Hence, only one of them
is counted. This leads to the following restrictions.

Restriction 1. If two geometrical structures
coincide after an appropriate rotation then only one
of them is used, since the other generates the same
canonical motifs.

Restriction 2. If two central parts coincide after an
appropriate rotation then only one of them is used,
since they generate two geometrical structures for
which restriction (1) applies.

Restriction 3. If a geometrical structure possesses
one of the LR, UL, D (respectively, all) symmetries,
then only one position from a symmetry pair (respect-
ively, quadruplet) is used, since the other(s) will
generate the same canonical motif.

Restriction 4. If strand 1 is placed in a self-symmetric
position (which may exist if the geometrical structure
possesses the LR or all symmetries) then strand 2 is
placed in only one of the two available positions since
the other will generate the same canonical motif.

Restriction 5. In the case of all symmetry properties
with two self-symmetric positions (as in figure 4c), only
one of these two positions is used to place strand 1, due
to restriction 3.
5.3. Construction of all possible central parts

One way to systematically construct all possible central
parts is to first consider the number of interlocks
contained in each central part and then to analyse all
possible cases of paths between two interlocks. Since
n%10, there exists only one central part with four
interlocks (and no loops between them). Thus, all other
central parts contain up to three interlocks. By
definition 5.1, a path between two neighbouring
interlocks lies entirely in the same sheet. This path
may either consist of only one strand position, common
to the two interlocks (trivial path), or, by assumption
5.3, it may contain up to two additional positions (up to
J. R. Soc. Interface (2009)
three loops). Furthermore, if two central parts coincide,
when properly rotated, then only one is counted, see
restriction 2. A systematic construction leads to a total
of only 16 central parts. Six of these central parts have
already been observed and these cases are presented in
figure 6, while the remaining 10 (presented in figure 7)
have not been observed yet.
5.4. Construction of all edge part pairs

Since a pair of edge parts is represented by an edge
matrix, we construct all edge matrices. Restriction 1
implies that certain edge matrices are not eligible for a
given central part that possesses some symmetry
property. Specifically, consider the following four
matrices:

E1 Z
v u

x y

" #
; E2 Z

u v

y x

" #
;

E3 Z
x y

v u

" #
; E4 Z

y x

u v

" #
;

where any of them generates the other three if we
interchange its columns, or rows or its diagonal entries.
From the pairs (E1, E2), (E1, E3) and (E1, E4), only one
of the two matrices is used if the central part possesses,
respectively, the LR, UL, D symmetry properties. If the
central part possesses all symmetry properties, only one
of the above four matrices is used.

The strand positions that lie in the same sheet of an
edge part belong to a path that also contains one strand
position of the closest interlock. Then by assumption 5.3

0% l 1; l 2; r1; r2%3: ð5:1Þ

Let e be the total number of strand positions of both edge
parts, i.e.

eZ l 1 C l 2 Cr1 Cr2: ð5:2Þ

For each value of e, we determine all possible values of
l1, l2, r1, r2 taking into account (5.1), (5.2) and the
choices of E1, E2, E3, E4 as described above. The values
of e are determined by eZnKc, where c is the number of
strand positions of a central part. From figures 6 and 7,
all possible values of c are 4, 6, 7, 8, 9 and 10. From
6%n%10, it follows that 0%e%6. Not all values of e
are combined with all values of c; for example, the values
eZ5, 6 are combined only with cZ4, while eZ1 is
combined only with cZ6, 7, 8, 9. As an example,
consider the case where the total number of strand
positions of the left edge part is 5 (Zl1Cl2). Then the
pairs (l1,l2)Z(5,0), (4,1), (1,4), (0,5) are not valid and
only the pairs (3,2), (2,3) may be used. Similarly, if the
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(a)

(d ) (e)

( f ) (g)

(h) (i)

( j )

(b) (c)

Figure 7. All possible cases of unobserved central parts with
their symmetry properties. (a) cZ8 (LR) (8a); (b) cZ9 (LR)
(9a); (c) cZ9 (LR) (9b); (d ) cZ10 (all) (10a); (e) 10 (all)
(10b); ( f ) 10 (LR) (10c); (g) 10 (none) (10d); (h) 10 (UL)
(10e); (i ) 10 (LR) (10f ); ( j ) 10 (D) (10g).
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total number of strand positions of the right edge part
is 6 (Zr1Cr2), only the pair (r1, r2)Z(3,3) may be used.
As another example consider the case where the value
eZ2 is combined with the central part 4a of figure 6
thus giving a geometrical structure with nZ2C4Z6
positions. Since this central part has all symmetry
properties, only the following four edge matrices
are eligible:

2 0

0 0

" #
;

1 0

1 0

" #
;

1 1

0 0

" #
;

1 0

0 1

" #
:

It follows that this combination produces only four
geometrical structures, which have the same symmetry
property with the above edge matrices, i.e. none, UL, LR
and D, respectively. These four geometrical structures
are:

none UL LR D

Definition 5.6 (uneven substructure).A substructure of
a central part (hence also of a geometrical structure
that contains this central part) is called uneven, if it
consists of two consecutive interlocks and of two paths
between them, such that one of the two paths has an
odd number of loops and the other path has an even
number of loops (including the case of zero loops). The
end strand positions of an uneven substructure are
the positions at the two ends of it, i.e. the two leftmost
positions of its left interlock and the two rightmost
positions of its right interlock. The internal positions
are the remaining ones.

All possible uneven substructures appear in the
central parts 7a 9a (figure 6) and 9b, 9c, 10f and 10g
(figure 7). Note that the central parts 7a (figure 6)
and 9b, 9c (figure 7) coincide with their uneven
J. R. Soc. Interface (2009)
substructures. The central parts 10f, 10g of figure 7
are composed of two uneven substructures of the form
7a (one of them is rotated in the case of 10f ), which
have a common interlock, the central one.

Lemma 5.7. If strand 1 is placed at an end position of an
uneven substructure U, then strand 2 may not be placed
in an internal position of U.

Proof. If strand 2 is placed in an internal position, then
strand n may not occupy an internal position and the
fictitious loop n/1 will not belong to U. Then, by
proposition 4.1(v) and definition 5.6, the two rightmost
strands of the left interlock or the two leftmost strands
of the right interlock would be antiparallel, which
contradicts proposition 4.1(iii). &

Theorem 5.8. Let m be the number of canonical motifs
generated by a geometrical structure. (i) Assume that a
geometrical structure does not contain an uneven
substructure. If this geometrical structure possesses
the LR, or the UL or the D symmetry, then mZn. If it
has all or none of these symmetries then, respectively,
mZn/2 or mZ2n. (ii) Assume that the geometrical
structure does contain one uneven substructure U with u
strand positions. If this geometrical structure possesses
none of the symmetry properties then mZ2uK4. If it
possesses the LR or D property then mZuK2. (iii) If
the geometrical structure does contain two uneven
substructures then mZ2.

Proof. (i) If the geometrical structure possesses none of
the symmetry properties, then, after strand 1 is placed
in each of the n positions, strand 2 may be placed in any
of the two available positions, thus producing mZ2n
canonical motifs If the geometrical structure possesses
one of the symmetry properties then nZ2pCs, where p
is the number of pairs of symmetric positions and s is
the number of positions that are self-symmetric. In the
UL, D case sZ0. In the LR case, restriction 4 implies
that after strand 1 is placed in each of the s positions
then strand 2 may be placed in only one of the two
available positions. Thus, there are two canonical
motifs generated by each of the p positions and one
canonical motif generated by each of the s positions,
for a total of mZ2pCsZn canonical motifs. In the case
of all symmetries nZ4qCs, where q is the number
of symmetry quadruplets; s is the number of self-
symmetric positions; and sZ0 or sZ2. Restriction 3
implies that only one of the four positions of a
quadruplet is used, each generating two canonical
motifs. Restrictions 4 and 5 imply that the number of
canonical motifs generated by the s self-symmetric
positions is s/2, for sZ0 or sZ2. Hence, the number of
canonical motifs ismZ2qCs/2Zn/4. (ii) By lemma 5.7,
each of the four end positions generates one canonical
motif and each of the remaining uK4 internal positions
generates two canonical motifs each, for a total of
mZ4C2(uK4)Z2uK4 canonical motifs. The UL prop-
erty is not valid due to the existence of an uneven
substructure U, thus only LR and D may be valid. If
in addition the geometrical structure possesses one of
these properties, then U also possesses the same
property and uZ2pCs, where p is the number of
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Table 1(a). All possible geometrical structures for the observed central parts, for nZ6,7,8,9, with their symmetry properties
and the number m of canonical motifs they generate.
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symmetry pairs of U and s is the number of its self-
symmetric positions (which may exist only in the LR
case). By restriction 4, the s positions generate one
canonical motif each. By restriction 3, only p of the 2p
positions are used. These include two end positions
each generating only one canonical motif, by lemma 5.7.
The remaining pK2 positions generate two canonical
motifs each. Thus, the total number of canonical motifs
is mZ2(pK2)C2CsZuK2. (iii) If the geometrical
structure contains two uneven substructures, then
n%10 implies that it consists of three interlocks and
the two paths between two interlocks in each substruc-
ture have 0 and 1 loop, respectively (cases 10f, 10g of
figure 7). In this case, the central part consists of these
two substructures, the total number of strand positions
is 10 and the edge parts consist of only the edge loops.
The resulting geometrical structure possesses either the
LR (case 10f ) or the D (case 10g) symmetry. By lemma
J. R. Soc. Interface (2009)
5.7, n/1 must belong to both uneven substructures, i.e.
it must be a jumping loop of the central interlock. The
LR or D symmetry of the geometrical structure implies
that strand 1 may be placed in only two of the four
positions of the central interlock and, by lemma 5.7,
strand 2 may not be placed in an internal position. Thus,
one canonical motif is generated in each case for a total
ofmZ2 canonical motifs. &

All possible geometrical structures, their symmetry
properties and the number m of canonical motifs
generated by each geometrical structure are presented
in tables 1a and 1b for the observed central parts and in
table 2 for the unobserved ones. Recall that eCcZn,
where c and e denote, respectively, the number of strand
positions of the central part and the pair of the edge
parts. In the left column of each sub-table, the values e, c
(first row) and the central part with its symmetry
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Table 1(b). All possible geometrical structures for the observed central parts, for nZ10, with their symmetry properties and the
number m of canonical motifs they generate.
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property (second row) are shown. The symmetry
properties of the resulting geometrical structure follow
from the fact that a geometrical structure possesses a
symmetry property (LR or UL or D or all) if both its
central part and the representative edge matrix possess
the same property. Thus, for example, if the central part
possesses all properties (hence also the LR property) and
the edge matrix possesses the LR property, then the
geometrical structure also possesses the LR property.
In the remaining columns, the applicable edge matrix
is shown in the top row and the symmetry property of
the resulting geometrical structure is shown in the
bottom row, together with the number m of canonical
motifs generated by this geometrical structure, as
implied by theorem 5.8. Following are some examples
that illustrate the results contained in these tables.

For nZ6 (table 1a) and the sub-table with eZ0,
cZ6, the only geometrical structure is generated by the
combination of the central part 6a of figure 6 and the
two edge parts with zero strand positions, i.e.
containing only an edge loop. The geometrical structure
and the mZ3 canonical motifs are

1  5  3 1  3  5 5  1  3
6  2  4

all
2  6  4 6  4  2

Only one position (denoted by ‘B’) is used from the
symmetry quadruplet that consists of four end positions

and only one of the two self-symmetric positions is used
J. R. Soc. Interface (2009)
(denoted by a star), since these two positions constitute
a UL symmetry pair. The ‘B’ position generates the
first two canonical motifs and the ‘star’ generates
the third one. All other canonical motifs, which are
generated if strands 1 and 2 are placed in positions
other than the above, coincide with the above three
after appropriate rotation. In the sub-table with eZ2,
cZ4, the 4 geometrical structures generated are:

none UL LR D

There are no self-symmetric positions and all
positions denoted by ‘B’ generate two canonical motifs

each, thus mZ12 in the ‘none’ and mZ6 in the other
three cases. For example, the canonical motifs for the
UL case are as follows:

1 2 4

6 5 3

1 6 4

2 3 5

6 1 3

5 4 2

2 1 5

3 4 6

4 3 1

5 6 2

4 5 1

3 2 6

For nZ9 (table 1a) and the sub-table with eZ2, cZ7,
all geometrical structures contain the central part 7a of
figure 6, which is an uneven substructure. Hence n/1
must belong to this central part. Consider the first and
last geometrical structures (columns 2 and 8):
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Table 3. The total number of geometrical structures (g.s.) and canonical motifs for each n.

nZ6 nZ7 nZ8 nZ9 nZ10

g.s. 5 7 19 49 63
c.m 33 89 200 625 825

Table 2. All possible geometrical structures for the unobserved central parts with their symmetry properties and the numberm of
canonical motifs they generate.
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none LR

If strand 1 is placed in one of the end positions of the
uneven substructure, then strand 2 cannot be placed
in any of the internal positions, thus in each such case
only one canonical motif is generated. For example, if
strand 1 is placed in the upper left of the end positions,
the canonical motifs generated in the none and LR
cases are

3 2 1 5 6 8

4 9 7

2 1 4 5 8 7

3 9 6
:

If strand 1 is placed in one of the three internal positions,
then strand 2 may be placed in each of the two available
positions with one exception for the LR case: if strand 1
is placed in the self-symmetric position, then strand 2
may be placed in only one of the two available positions.
Thus, the total number of canonical motifs generated is
10 for the none and 7 for the LR cases.

For nZ10 (table 2) and the sub-table with eZ0,
cZ10, the geometrical structure of the seventh row,
J. R. Soc. Interface (2009)
which uses the central part 10f of figure 7, contains two
uneven substructures:

LR

The loop n/1 must belong to both uneven
substructures, hence it lies in their common (central)

interlock. Since the geometrical structure possesses the
LR property, there are two positions to place strand 1,
denoted by a star. For each of them, n must occupy a
position of the interlock, hence only the following two
canonical motifs are generated:

4 2 1 6 7 9

3 5 10 8

2 4 5 10 9 7

3 1 6 8
:

A summary of the number of geometrical structures
and the total number of motifs, for each n, is presented
in table 3.
6. CONCLUSIONS

Without using the results of the present work, the a
priori number of all possible motifs is prohibitively
large. Specifically, all possible subsets of k and (nKk)
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strands, belonging to two different sheets, are
�
n
k

�
All

possible permutations for each set of k and (nKk)
strands are, respectively, k! and (nKk)! Thus, the
number of all motifs with k and (nKk) strands in the

two sheets is k!!ðnKkÞ!!
�
n
k

�
Zn! for each value

of k. If we assume that there must be at least two
strands in each sheet, then kZ2, ., (nK2), hence the
total number of motifs for given n is (nK3)!n! Thus,
if we do not use the results of the present work, the
total number of all possible motifs is the sum of these
numbers for nZ6, 7, 8, 9, 10, which is approximately
equal to 32 million motifs. Even if we use the con-
vention of this paper that two motifs are considered
the same if they coincide after an appropriate rotation,
we find about one-quarter of the above number of
motifs, i.e. approximately 7 million motifs, which is
still prohibitively large. Our approach has led to a
tremendous reduction of the number of (canonical)
motifs, namely table 3 gives only 143 geometrical
structures and 1772 motifs!

Some of the rules used here are consistent with the
stereochemical approach based on the construction of
structural trees (Efimov 1997). Our analysis is
restricted only to sandwich proteins, and, for this
case, our results are more complete and yield an
effective characterization of the relevant motifs.
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